The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin.
نویسندگان
چکیده
During development, renal glomerular epithelial cells (podocytes) undergo extensive morphologic changes necessary for creation of the glomerular filtration apparatus. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of intercellular urinary spaces. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in maintaining the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. This study examined whether the highly conserved cytoplasmic tail of podocalyxin also contributes to the unique organization of podocytes by interacting with the cytoskeletal network found in their cell bodies and foot processes. By immunocytochemistry, it was shown that podocalyxin and the actin binding protein ezrin are co-expressed in podocytes and co-localize along the apical plasma membrane, where they form a co-immunoprecipitable complex. Selective detergent extraction followed by differential centrifugation revealed that some of the podocalyxin cosediments with actin filaments. Moreover, its sedimentation is dependent on polymerized actin and is mediated by complex formation with ezrin. Once formed, podocalyxin/ezrin complexes are very stable, because they are insensitive to actin depolymerization or inactivation of Rho kinase, which is known to be necessary for regulation of ezrin and to mediate Rho-dependent actin organization. These data indicate that in podocytes, podocalyxin is complexed with ezrin, which mediates its link to the actin cytoskeleton. Thus, in addition to its ectodomain, the cytoplasmic tail of podocalyxin also likely contributes to maintaining the unique podocyte morphology.
منابع مشابه
Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton.
Podocalyxin (PC), the major sialoprotein of glomerular epithelial cells (GECs), helps maintain the characteristic architecture of the foot processes and the patency of the filtration slits. PC associates with actin via ezrin, a member of the ERM family of cytoskeletal linker proteins. Here we show that PC is linked to ezrin and the actin cytoskeleton via Na(+)/H(+)-exchanger regulatory factor 2...
متن کاملThe CD34-Related Molecule Podocalyxin Is a Potent Inducer of Microvillus Formation
BACKGROUND Podocalyxin is a CD34-related transmembrane protein involved in hematopoietic cell homing, kidney morphogenesis, breast cancer progression, and epithelial cell polarization. Although this sialomucin has been shown to block cell adhesion, the mechanisms involved remain enigmatic. It has, however, been postulated that the adaptor proteins NHERF-1 and 2 could regulate apical targeting o...
متن کاملCLIC5A, a component of the ezrin-podocalyxin complex in glomeruli, is a determinant of podocyte integrity.
The chloride intracellular channel 5A (CLIC5A) protein, one of two isoforms produced by the CLIC5 gene, was isolated originally as part of a cytoskeletal protein complex containing ezrin from placental microvilli. Whether CLIC5A functions as a bona fide ion channel is controversial. We reported previously that a CLIC5 transcript is enriched approximately 800-fold in human renal glomeruli relati...
متن کاملClustered PI(4,5)P₂ accumulation and ezrin phosphorylation in response to CLIC5A.
CLIC5A (encoded by CLIC5) is a component of the ezrin-NHERF2-podocalyxin complex in renal glomerular podocyte foot processes. We explored the mechanism(s) by which CLIC5A regulates ezrin function. In COS-7 cells, CLIC5A augmented ezrin phosphorylation without changing ezrin abundance, increased the association of ezrin with the cytoskeletal fraction and enhanced actin polymerization and the for...
متن کاملSchip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin
BACKGROUND Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. RESULTS By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 12 8 شماره
صفحات -
تاریخ انتشار 2001